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1 Introduction

A new algorithm has been developed for the digital signal processor (DSP) in
the digitizing card of the Accumulator beam position monitor (BPM) system.
The main motivation is to make the measurement more accurate. The previous
algorithm consisted of a fast Fourier transform (FFT) with a peak search; this
was implemented only using 8192 samples. The algorithm presented here uses
the ACNET value of the bunching RF frequency as an input parameter and so
it only needs to perform a one-point Fourier transform. Moreover, a ping-pong
mechanism for the management of the DSP memory has been implemented,
which allows exploitation of a larger set of digitized data.

2 The BPM Readout System

The signal from the BPM pick-up plates goes through a pre-amplifier mounted
on the beam pipe at the location of the pick-ups. The pre-amplifiers also have
a calibration input which can be used to determine a normalization between
channels used by the DSP algorithm. After being brought up to the service
building, the signal enters an analog down-converter (DC) card, which consists
of an amplification stage and two low-pass filters (figure 1) for closed orbit
measurements. Note that there is no down conversion done when the BPM
system is in Closed Orbit Mode. The output of the DC card is fed to the
digitizer card, which includes a sampling ADC and a DSP. A console application
passes parameters to the DSP and reads the resulting position and amplitude
measurements through the Slot 0'VXI Controlier.

For every sector there is a VXI crate with four sets of analog and digitizing
cards. Each set of cards consists of eight channels allowing for the determination
of the position and amplitude for four BPMs. Each DSP is responsible for
calculating the position for four BPMs. There are a total of 24 DSPs in the

BPM system.
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More information can be found at http://www-rfi.fnal.gov/PBBPM/
PBBPM.html. In particular, information about ACNET control is documented.

3 Measurement Technique

The quantity of interest is the amplitude of the signal from each of the pick-up
plates of a BPM. Let us first assume that, due to the RF bunching, the signal as
a function of time is described by the function s(t) = Asin (27 frrt + ¢). The
first step of the algorithm (which we call “heterodyne method” in analogy with
the super-heterodyne radio receiver) is to modulate the signal with a sine and
a cosine of known frequency f.. (chosen to be as close as possible to frr):

Ssin (£) = s(t) - sin (27 ft)

Scos(t) = s(t) - cos (2 fint).

The resulting functions sgi, and scos are the sum of a low-frequency (| frr — fml)
and a high-frequency (far + fm) component. They are then integrated over a
number n of periods of the modulating frequency fr:

— 2 n/ fm .
Agn = _——(n/fm) /(; Ssin(t)dt

2 n/fm ‘
Acos = m/ﬂ Scos(t?dt.
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Figure 1: BPM system readout schematics (closed-orbit mode).



The number n is chosen according to the following criteria:
fm .
|far — fml’
in this way, the integration removes the high-frequency component of sgq

and s¢os. The geometrical average of the two integrals Agn and Ages repre-
sents the measurement of the signal amplitude A:

l€nk

Ameas = Agin + Agos . (1)

Multiplying the signal by both sine and cosine is done to get rid of the initial
phase ¢. This procedure is equivalent to calculating the modulus of the Fourier
transform of the function

s(t) x (square box of length n/f.,,)

at f = fm:
Ameas ¢ [S(fm)| =

n/fm
/ s(t) e Imt g |
0

If the modulating frequency f,, is not equal to frr, the measured ampli-
tude Ameas is smaller than the actual amplitude A. Depending upon the desired
precision on the measurement of the amplitude, one can estimate a tolerable
value for the frequency difference f,,, — frr, what precision frr must be known.
In the case of sinusoidal signal, the ratio Ameas/A is given by the following ex-
pression (plotted in figure 4(a) as a function of f,, — far for frr = 1.27 MHz,
n = 3251 and ¢ = 0 rad):

Amess _ fae 2w |0 [om (1 5F)]
A fm  fRF+ fm nmw (1 _ IJ;}"E.)
fi fRr . f
X \ﬁos2 (¢+nﬂ'§-) + —]%sm2 (¢+mr—}—a£) . (2)

Besides its obvious maximum at f,, = frr, this function has a series of zeroes,
the closest of which occur at |fn, — far| = fm/n. This is just a quantitative
way of saying that the wider the integration interval is, the more sensitive to a
frequency error the amplitude measurement will be. Even when f,, = fr, there
is an error if the integration extends over a non-integer number of periods v =
n+¢ (0 < € < 1), but it is usually much smaller and decreases rapidly as n
increases. In the case of a sinusoidal signal, it can be evaluated as follows:

Ameas _ € \/ 5in 2¢ — sin (2¢ + 4wv) 1 — cosdnv
A (1+ n) 1+ 2y + 822



To estimate how good the measurement of the amplitudes A and B on the
two pick-up plates has to be in order to get a reasonable position accuracy, the
relationship between the position z and the ratio r = B/A has been analyzed':

A-B 1-r

TTAYB T 1+

Figure 2(a) emphasizes the dramatic change in amplitude ratio as the position

spans the available range. An amplitude measurement error is parameterized
by a factor a (which will be, in general, a function of position) multiplying the
ratio 71 @ = Tieas/r. Figure 2(b) shows the position error Az as a function
of r for different values of a. As can be expected, the most stringent constraints
on accuracy come from positions near the center of the BPM. From the same
figure, one can deduce that if the ratio of the amplitudes is measured with 5%
accuracy, the position error is always smaller than about 2% of the full effective
radius.

In reality, the BPM signal, instead of being a smooth function s(t), consists
of a string of 2'7 = 131072 integer numbers, s;, in the range 0-4095, which come
from the 12-bit sampling ADC and are stored in the memory of the digitizer
card. The sampling frequency has been chosen to be f; = 25.6 MHz, so that each
oscillation period of the signal contains f;/f, ~ 20 sampling points (the RF
is frp = 1.27 MHz, twice the revolution frequency of the beam). Therefore,
each data set has information on approximately 6 - 10% oscillation periods. In
the DSP code, the measurement of the signal amplitude is achieved through the

INeglecting the effective radius and the position offset of the pick-up, or the relative cali-
bration between the two plates, does not affect the generality of the following remarks.
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Figure 2: (a) The ratio B/A as a function of position z. (b) Position error as
a function of the ratio B/A for five different values of the error @ on the ratio:
top curve a = 0.5 and bottom curve a = 0.99.



following formula, in analogy with equation. 1:

o= 2 [ )] 4 [Bo o o)

The number Ng is chosen in order to include the desired number of complete
oscillations; in our simulations and measurements it usually varies between 8192
and 65536 (a memory hardware problem prevented us to use all of the 131072
points). To save computing time, sines and cosines are calculated only once
and stored in a lookup table in the DSP memory. The lookup table has 15000
entries, which are sufficient for representing one period of a sinusoid with good

numerical accuracy.
An averaging feature has also been implemented (“video averaging”). For

a given total number Nz of sampling points (which is usually the maximum
number of available data points 65536), one can specify Ng (1 < Ng < Nr)
and the offset between samples Ny (1 < Ny < Ng); their meaning is explained
in figure 3. In this case, more than one amplitude measurement is performed,

1/2

" one for each of the samples in figure 3; the final result is the arithmetic mean

of these measurements. The purpose of the video averaging feature is to reduce
the spread of the position determination while keeping it independent from the
difference f, — far (within a desired frequency range).
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Figure 3: Diagram showing the averaging procedure.
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4 Simulations

The algorithm has been tested first by giving it a fake input data sample, gen-
erated by a software signal simulator. The simulator adds white noise? to a
sinusoid of given amplitude, and then discretizes the result, producing an ADC-
like output (a set of integer numbers). Besides the signal and noise amplitudes,
all the other parameters (sampling and modulating frequency, number of data,
points, ...) can be changed to see their effect.

Figure 4 shows some of the results of the amplitude measurements for the
simulated signal. The solid dots represent the output of the algorithm, while
the curves are the expected behavior as a function of f,,, (equation 2). The
signal amplitude A and the noise amplitude n4 are in ADC counts. In the best
case, when the amplitude is large compared to the LSB of the ADC and there
is no noise, the predicted amplitude is identical to the measured amplitude, as
shown in figure 4(a). Figure 4(b) confirms that integrating over a smaller num-
ber of periods, the measured amplitude becomes less sensitive to the frequency
difference. In figure 4(c) is shown the effect of discretization in the ADC; the
amplitude of the signal has been chosen to be only 5§ ADC counts. An amount
of random noise comparable to the signal can compensate the effects of dis-
cretization, as shown in figure 4(d). Figure 4(e) illustrates that larger noise will
distort the results.

The position measurement has also been simulated. Four positions have been
chosen (0 mm, 5 mm, 20 mm and 50 mm, with an effective radius of 68 mm), and
four noise amplitudes (0, 1, 5 and 20 ADC counts). The software signal simulator
generates a pair of signals that would give the desired position; this is done at
nine different values of the amplitude of the largest channel (channel A), from
about 1 ADC count to about 100 ADC counts (represented by the simulated
gain of channel A going from g4 = —10 dBV to g4 = 30 dBV). The pair of
signals is the input of the heterodyne algorithm, which outputs a measured
position. The measured position is then compared with the position generated
by the simulator. For each value of the above-mentioned parameters, twelve
different pairs of signals are generated, so that the spread of the results can be
evaluated. Figure 5 shows the measured position as a function of amplitude for
the four different values of the noise amplitude; for these plots, Ny = 65536
and Ng = Ny = 8192. The spread in the measurements is quantitatively
represented by the standard deviations in figure 6. This simulation predicts
that, if the white noise is small (say, 1 ADC count) and the only other source
of non-linearity is the ADC digitization, the position can be determined to less
than 0.3 mm (using all the available data points N7 = 65536).

Note that none of the simulations have any coherent noise. The actual
environment has many sources of electronic noise.

2 A random number is generated, with Gaussian distribution. The mean of the distribution
is zero, whereas its standard deviation is equal to the adjustable parameter n4.



Sine wave. Ny = 85536 Nggw = 8192 Ngyerwe = 0
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Figure 5: Results of the simulated position measurements. The generated po-
sition was 0 mm (black dots), 5 mm (red squares), 20 mm (green triangles
pointing upwards) and 50 mm (blue triangles pointing downwards).



Sine wave. Ny = 65536 Nggy = 8192 Ngyerwr = O
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Figure 6: Standard deviation of the simulated position measurements. The
generated position was 0 mm (black dots), 5 mm (red squares), 20 mm (green
triangles pointing upwards) and 50 mm (blue triangles pointing downwards).



5 Memory Management

The amount of DSP memory used for the algorithm memory is limited
to 192 KB. The FFT algorithm only use the first 8192 samples. This led to
statistically poor measurements, with relatively large fluctuations. We decided
to allocate memory for the sinusoid lookup table of 60 KB and for two ping-pong
buffers with each having 60 KB. While one buffer is being analyzed, the next
subset of data is transfered from the ADC’s memory to the other ping-pong
buffer in the DSP algorithm memory area. The memory management is done
so that it is transparent to the amplitude measurement algorithm; in this way,
a data sample of any length can be analyzed in its entirety. By going from 8192
to 65536 data points, for instance, the fluctuations are expected to be reduced
by a factor of v/8 = 2.83.

6 Performance with the Calibration Systém

The algorithm has been tested with the real readout hardware using the cali-
bration system. It has also been compared with the FFT algorithm.

Figures 7 and 8 show the distribution of 100 position measurements from
one BPM for different intensities into the ADC, respectively. The three his-
tograms in each figure correspond to the FFT algorithm, the heterodyne algo-
rithm with Ny = 65536, Ns = 65536 and Ny = 65536, and the heterodyne
algorithm with N7 = 65536, Ng = 8192 and Ny = 4096 (VID is just the name
of the heterodyne algorithm after the addition of the video-averaging feature).

The algorithms’ mean positions agree at each intensity. The rms spread de-
creases by better than a factor of 3.75 which is more than the expected decrease
due to 8 times the statistics. For the new algorithm, the rms spread decreased
from 0.04 mm to 0.01 mm when the signal intensity increased by a factor of 5.

7 Speed of Algorithms

Table 1 shows the length of time for the BPM system to complete ten consecutive
measurements. The ARM and TRG clock events were set to 0F which means
that the DSP was in the IDLE or ARM state for ~ 1.0 second for the ten
measurements. It takes the same amount of time for Ny = 8192 using the
FFT and HET algorithms. The time is nearly linear with Np when the HET
algorithm is used. The VID algorithm with no overlap (Ng = Ng) is a little
slower than the HET algorithm for Nz = 65536. The ratio of Ng/Npg is the
factor for the increase of time to do the calculations from the no overlap case
(Ng = Ng) due to the increased number of times that each point is used (simply
more calculations are done).

10
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Figure 7: Calibration setup. Comparison of position measurements from three
algorithms. Calibration signal of 50 mV and DC card gain set at —10 dBV.

11

e L A TR 1 LR L COER A A A L L | AR L I B 1



N
(S I -

N
e

QO

20
15
10

©

20

10

.OO

BPM 101H 250 mV calib. signal g, =gy = —10 dBV

- Entries 100

c Mean 0.2963

E RMS 0.3653E—01

. FFT 8192

: I3 1 1 [_I ' ’_I ﬂ 1 H D I L L 1 1]

15 0.2 0.25 0.3 0.35 0.4 0.45
x {mm)

§ Entries 100

= Mean 0.2920

E_ RMS 0.9693E-02

E_ HET 65536 (65536/65536)

E L 1 1 i I 1 1 1 1 [ 1 1 l 1 i I 1 1 i 1

15 0.2 0.25 0.3 0.35 0.4 0.45
x (mm)

Entries 100

I Mean 0.2923

r RMS 0.8845£-02

E VID 65536 (8192,/4096)

3 1 1 L L l 1 : ] 1 1 I 1 1 1 l | L I 1 1 ] 1

15 0.2 0.25 0.3 0.35 0.4 0.45
x {mm)

Figure 8: Calibration setup. Comparison of position measurements from three
algorithms. Calibration signal of 250 mV and DC card gain set at —10 dBV.
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Algorithm Number of Points Time for 10

Nt Ng Ny Measurements (s)
FFT 8192 - - 12.5
HET 8192 | 8192 | 8192 12.4
HET 16384 | 16384 | 16384 16
HET 32768 | 32768 | 32768 32
HET 65536 | 65536 | 65536 59
VID 65536 | 8192 | 8192 62
VID 65536 | 8192 | 4096 117
VID 65536 | 8192 2048 240

Table 1: The time to make 10 consecutive measurements with the different
algorithms and algorithm parameters.

8 Conclusion

A new algorithm has been successfully implemented with the DSPs of the BPM
system. A FFT method has been replaced by a one-point Fourier transform.
The new algorithm uses a ping-pong method to access the ADC data. Since
the new algorithm uses more of the available ADC data, the new method is
more accurate. The speed of the new and old algorithms are equivalent for the
small data set that had been used. To have expanded the FFT data sample, the
processing time should have increased as Nt log Nr; whereas the new algorithm
processing time has been shown to go as Ny. The RF is needed by the new
algorithm; the more accurate the better. There is the option to analyze the
data in segments smaller than the total data set in order to perform a video
average. This will be helpful if the RF is not known accurately. Further tests
will be performed when beam becomes available.
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